If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2+8x-80=0
a = 24; b = 8; c = -80;
Δ = b2-4ac
Δ = 82-4·24·(-80)
Δ = 7744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7744}=88$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-88}{2*24}=\frac{-96}{48} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+88}{2*24}=\frac{80}{48} =1+2/3 $
| 15d+-12d+-8d+6d=16 | | 5+0.65x=10+0.45 | | (x+84)+2x=180 | | 4x+6=-6x+-54 | | 2(9x+4)=-24(x-4) | | 2(9x+4=-24(x-4) | | 2x+10=-18 | | 7m+19=-2m+55 | | 5f+9=19 | | 15x+3=12x+12 | | 3x-40=40+x | | 17(10x+23)=136(x-3) | | 18n+2n-17n-3n+3n=15 | | 72-2g=36 | | 0.8=x/100 | | 18(7x+7)=-24(x-3) | | (7x+42)+(10x-49)=180 | | (7x+42)-(10x-49)=180 | | 67=18+7x | | 20(9x+10)=18(x-4) | | 2x=7/11 | | X^2+y^2-8y=8 | | 2x2−14x+10=26 | | c/9=−4 | | 20(8x+18)=23(x-2) | | -7=6(y-4) | | 3w-^-14+-17=0 | | -16n=320 | | 99=8-7g | | 15x+6=7x-50 | | 32x+7=57 | | 20(8x+18=23(x-2) |